На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

Пусть у нас есть два КПВ $y_1(x_1)$ и $y_2(x_2)$. Тогда, если $X=x_1x_2$ и $Y=y_1y_2$, будем называть кривую $Y(X)$, ограничивающую все доступные наборы $(X, Y)$ произведением двух исходных КПВ.

1. Найдите произведение КПВ $y_1=a-x_1$ и $y_2=b-x_2$

Случайная задача

Авторы задач

Темы задач

Олимпийка или олимпос?

Фирма «Вершина» производит олимпийские куртки и имеет возможность осуществлять ценовую дискриминацию, продавая их по разным ценам на внутреннем и внешнем рынках. На внутреннем рынке фирма «Вершина» является монополистом и функция спроса на куртки имеет вид $Q^d=200-P$, на внешнем рынке фирма может продать любое количество курток по цене $P_w=160$. Функция издержек фирмы «Вершина» на производство курток имеет вид $TC=Q^2$.

Вполне прозрачная экономика

Рассмотрим экономику, которая состоит из двух секторов – промышленное производство и сельское хозяйство. Также для простоты предположим, что промышленность находится в городе, а сельское хозяйство – в сельской местности. В сельской местности живет $45$ млн. человек, а в городе – $15$ млн. человек. На рынке промышленной продукции действует $10$ фирм, произодственная функция каждой из которых $Y = 25L_y - 2.5L_y^2$, где $Y$ – количество производимого товара в промышленном секторе в день в млн. штук, а $L_y$ – количество работающих людей в млн. человек.

Классика

На совершенно конкурентном рынке в краткосрочном периоде спрос представлен функцией $Q^d = 200-5P$, а предложение предъявляют $80$ одинаковых фирм с издержками $TC_i = 2q_i^2+10q_i +2021$, где $q_i$ – выпуск отдельной фирмы.

Добро пожаловать в рай!

Небольшое островное государство Исла Парадайз разделено на три региона: Сансет Вэлли, Риверсайд и Бриджпорт. В стране производятся только сети для ловли рыбы и паруса для кораблей. Кривая производственных возможностей (КПВ) Сансет Вэлли описывается уравнением $y_1 = 10 - x_1$, КПВ Риверсайда $y_2 = 10 - 0,5x_2$, КПВ Бриджпорта $y_3 = 20 - 2x_3$, где $x_i$ – сети для ловли рыбы, а $y_i$ – паруса для кораблей.

Автобус или метро?

В некотором городе живет $2$ группы жителей, пользующихся общественным транспортом. $40\%$ жителей готовы заплатить за месячный проездной на метро $2500$ руб., а на наземный транспорт – только $750$ руб. $60\%$ жителей же, напротив, проездной на метро оценивают в $1200$ руб., а на наземный транспорт – в $1800$ руб. При этом транспортная компания, обеспечивающая перевозки, может выпускать либо отдельные проездные на метро и наземный транспорт, либо единый – на все виды транспорта.

Он улетел, но обещал вернуться

Карлсон, после того как улетел от маленького мальчика, решил заняться выращиванием фруктов, а именно яблок и груш. Так случилось, что в месте куда он улетел, с одной яблони за год можно было собрать лишь одно яблоко, а с дерева груши — только одну грушу. У Карлсона было $100$ рублей, причем саженец дерева груши стоил $5$ рублей, а саженец яблони — $20$ рублей. При этом вся грядка Карлсона имела площадь $30$ квадратных метров. Одно дерево груши занимало площадь $2$ квадратных метра, а одна яблоня — $3$ квадратных метра.

Пробки

Пусть из спального микрорайона в центр города проложены две дороги – Северная и Южная. Каждое утро по ним едет фиксированное число автомобилистов. При этом из-за возможных пробок время движения зависит от того, сколько людей выберет каждую из дорог. По Северной можно добраться за $25+30x_1$ мин., по Южной – за $15+70x_2$ мин., где $x_1$ и $x_2$ – доли едущих по ним автомобилистов. Предположим, что люди выбирают дорогу, исходя из единственного критерия – желания добраться побыстрее. На сколько минут сократится ожидаемое время в пути, если Северную дорогу расширить втрое?

Капитализм vs. социализм (1)

Производственная функция экономики имеет вид $Q=\sqrt[3]{L}$, где $Q$ – совокупный выпуск экономики, а $L$ – количество трудоустроенных граждан (будем считать труд единственным фактором производства). Заработная плата в экономике равна $w=const$, цена продукции равна $p=const$.
(a) Сперва предположим, эта экономика капиталистическая (то есть все её фирмы максимизируют прибыль). Рассчитайте равновесный выпуск $Q_1^\ast$ и занятость $L_1^\ast$.

Внезапная зима(разделение заводов 2)

В городе N спрос на услуги по уборке снега описывается уравнением $Q(P)=189-9P$, где Q - количество убранного снега в тоннах, P - цена услуги в рублях(такой вот бедный город). На данном рынке работает фирма-монополист А, управляющий которой - старый друг мэра города. Фирма обладает тремя снегоуборочными машинами, издержки обслуживания которых составляют
\[TC(q_1)=\dfrac{q_1^2}{6} \qquad \qquad TC(q_2)=\dfrac{q_2^2}{12} \qquad \qquad
TC(q_3)=\dfrac{q_3^2}{36}\]

Террабус

В городе N существует автобусный маршрут из пункта A в пункт B длиной 16 километров. Компания "Террабус" является единственным перевозчиком на данном маршруте. Компания использует K автобусов, которые передвигаются по маршруту со скоростью 50 км/ч, один автобус вмещает 50 человек. Аренда одного автобуса обходится компании в $r=100$ д.е. в день. Рабочий день длиться 8 часов. Также компании известна функция спроса на автобусные перевозки: $Q_d=\frac{720-3P}{\tau}$, где $\tau$-интервал движения автобусов.