На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

В островном государстве “Рыблэнд” основным занятием является рыболовство. Все рыболовецкие хозяйства, коих бесчисленное множество, расставляют сети для ловли рыбы в окрестностях острова, а затем перевозят пойманную рыбу на кораблях для дальнейшей продажи на острове.

Случайная задача

В стране А спрос на сигареты описывается уравнением Qd = 80 - 2Р, а предложение сигарет Qs = 10 + 10P (цена Р — в долларах, количество Q — в млн. пачек в год). В стране В спрос и предложение сигарет описываются соответственно уравнениями Qd = 20 – 8P и Qs = 10 + 20P.

Авторы задач

Темы задач

Рыблэнд

В островном государстве “Рыблэнд” основным занятием является рыболовство. Все рыболовецкие хозяйства, коих бесчисленное множество, расставляют сети для ловли рыбы в окрестностях острова, а затем перевозят пойманную рыбу на кораблях для дальнейшей продажи на острове. Цена одной тонны рыбы установилась на уровне 20 дублонов, стоимость одной сети (покрывает 1 квадратную милю) составляет 10. С одной квадратной мили в среднем за год можно собрать 1 тонну рыбы, а издержи на доставку одной тонны продукции составляют 1 дублонов за каждую милю.

Анализ эффективности использования материальных ресурсов и производственных запасов

Определите состояние запасов материальных ценностей на конец отчетного года, при это используйте следующую таблицу 6. Сделайте выводы.

Сложение нелинейных кривых Лоренца.

А) Зададим две функции кривых лоренцов.
$$1) y_1=x_1^a$$
$$2) y_2=x_2^b$$

Пусть население первой страны = $A_1$. А все их доходы $\sum \limits_1^{A_1}=B_1$
Пусть население второй страны =$A_2$. А все их доходы $\sum \limits_1^{A_2}=B_2$

Задача: сложите данные кривые лоренца

Б)Пусть в первой стране кривая лоренца состоит из двух групп и задается системой:

\begin{equation*}
\begin{cases}
bx_1 x \in [0: \alpha]\\
-c+(1+c) \cdot x_1 x \in [\alpha: 1]
\end{cases}
\end{equation*}

Мировая экономика

Рассмотрим две страны – А и Б. Рынок труда в этих странах характеризуется следующими данными. Функция спроса на труд в А имеет вид: DА=50-W, а функция предложения труда: SА=-10+2W, где W – реальная заработная плата. В Б соответствующие функции имеют вид:
DБ=90-W и SБ=2W-60.

Бесконечный король

Страной "Infinity" управляет король, который правит вот уже целую вечность. Проживая каждую неделю он потребляет товар X. В первую неделю правления полезность от потребления x была равной $\frac{1}{2}$. В на следующей неделе $\frac{2}{4}$ Как итог его полезность можно задать таким образом:
$$U_{\text{короля}}=\sum \limits_1^\infty \frac{t}{2^t}$$ (t)=номер недели, которою проживает король.

Разные взгляды.

Собрались как-то школьники порешать задачи по экономике. Когда настала очередь макроэкономики. Зашел спор о том, по какой формуле считать Располагаемый доход.
В результате спора ребята получили две разные формулы. $$Y_d=C+S-T$$ $$Y_d=C+S$$
Но не могу же они обе давать одинаковый результат. Пошли ребята к своему учителю по экономике. Показали обе формулы, подумав, он взял листок бумаги, дописал пару индексов к формулам, после чего заявил, что обе формулы после поправок дают одинаковые числа.

Перекрестная эластичность

Дана функция спроса на товар А:
Qda = -2Pa - 0,3Pa +810
Определить коэффициент перекрестной эластичности спроса на товар А по цене товара В, если Ра = 300, Рв = 200

Дифференциация цены на дифференциальные уравнения

Фирма "Tex"=монополист на рынке решения дифференциальных уравнений. В стране есть два университета, которые пользуются ее услугами. Спрос первого университета можно описать как $$Q_{d1}=100-2P$$
$$Q_{d2}=200-10P$$

Первый год, фирма устанавливала для каждого университета разные цены. Известно, что издержки фирмы задаются уравнением: $$TC=4q_1^2+2q_1 \cdot q_2 +3q_2^2+204$$

Через год, правительство вводит для фирмы "Tex" следующее правило, оно устанавливает единую цену для каждого из университетов.

Монополисты.

$$\text{Задача №1}$$

Свинин – монополист на рынке мяса. Он действует на двух сегментах рынка, при этом устанавливая разные цены.
$$Q_d1=60-2P_1$$ $$Q_d2=80-2P_2$$ $$TC=Q^2$$
Через год государство предложило ему установить единую цену на общем рынке, при этом заплатив 20% от прибыли. Согласится ли Свинин с этим предложением?

Альматекс

2150 год. Агент octk_uqnqf разузнал, что в оптимуме у фирмы-монополиста "Альматекс" эластичность выручки по цене равняется -1, предельные издержки равны 3, эластичность спроса по цене постоянна и при $p=1$, $Q=32$.
Помогите напарнице octk_uqnqf, СВЕТЕ, разузнать, сколько же Альматекс производит в оптимуме...
$TC$ имеют "нормальный" вид.