Донской казак Даниил научился решать «полезные» задачки по математике, чему хочет посвятить все оставшуюся жизнь. Уезжать с Дона он не планирует, ведь как известно «с Дона выдачи нет». Однако данный процесс решения задач с каждой последующей задачей становится все тяжелее и тяжелее, поскольку растут так и уровень сложности задач, так и время, которое необходимо на них потратить. В конце концов ему запросто может попасться задача тысячелетия, решение которой он вряд ли осилит за свою жизнь. По этой причине его издержки на решение задач задаются следующим образом:
Мясная страна представляет собой конфедерацию, состоящую из $N$ независимых друг от друга регионов, жители которых потребляют два товара – хлеб ($x$) и мясо ($y$).
Агрегированная полезность жителей от потребления данных товаров в каждом регионе задается следующей функцией:
Все тот же фермер продает топинамбур на ск рынке. Для производства он использует труд рабочих, и это единственный фактор производства. Люди, так же как и топинамбур, бесконечно делимы. Цена одного кг топинамбура равна 10 рублей.
Производственная функция следующая: Q = -L² + 20L, если нанято не более 10 рабочих. Если нанято более 10 рабочих, Q = 100.
Для производства используются уже нанятые на месяц два человека, работающих каждый на своем поле, а также одна лейка.
У каждого работника есть 200 часов рабочего времени в месяц. За час без лейки первый работник может вырастить 10 кг топинамбура, второй – только 5. Если лейку будет использовать первый работник, то он сможет выращивать 50 кг топинамбура/час, а если лейкой воспользуется второй работник, то его производительность достигнет 10 кг топинамбура/час.
Фермер выращивает и продает на совершенно-конкурентном рынке города M топинамбур.
Для производства одной партии (может быть нецелой) используется аренда поля и труд пяти работников.
Есть огромное множество одинаковых полей. Государство решает поддержать отечественного производителя, а потому позволяет бесплатно выращивать на полях. Однако чем дальше поле располагается от города M, тем дороже выходит доставка. Таким образом, издержки на доставку с первого поля составляют 3000 руб/день, с каждого последующего на 2000 рублей дороже.
На рынке задач на карусель работает монополист. Спрос первого потребителя на задачи задаётся функцией $Q^D_1=10-P$, а второго потребителя $Q^D_2=14-P$, где $P$ - цена одной задачи и $Q$ - количество задач. Издержки монополиста на производство задач задаются уравнением $TC=0.5Q^2$.
Допустим, монополист назначает потребителям двойной тариф. То есть потребители задач сначала платит монополисту некоторую сумму за возможность покупать задачи, а затем платят за каждую купленную задачу цену, назначенную монополистом.
Поспорили однажды два социолога, экономиста, демографиста, историка и маэстро всех областей гуманитарной мысли Анипов Алексей и Гончаров Константин на очень важную и животрепечущую тему - Мальтузианскую Ловушку. Сам спор описан не будет, так как составитель не имеет возможности, квалификации и гениальности, чтобы понять позицию каждого из участников спора. Но сама суть спора крайне интересна - был ли Мальтуз таки прав?
Однажды экономист проезжал мимо поста дорожной службы, где увидел своего дядю-инспектора. Завязался разговор, в ходе которого миллиционер поднял наболевшую тему: “Вот, ездят обгонщики по обочине, а честные граждане вынуждены их пропускать и тратить своё время”. На что экономист заметил: “Но ведь от того, что используется больше полос, пропускная способность дороги увеличивается”. Они пожали руки, и экономист поехал дальше, думая про себя о проблемах автодорожного регулирования.