Задача 1 ОЧ-2014 (10-11 класс). SuperOil

Общие издержки нефтедобывающей компании SuperOil, измеренные в долларах, описываются уравнением $TC=q^5-20q^3+197q,$ где q — количество баррелей нефти, добываемой компанией. Всю нефть компания поставляет на экспорт. Компания выбирает объём выпуска таким образом, чтобы максимизировать свою прибыль. SuperOil занимает небольшую долю мирового рынка, поэтому не может влиять на сложившуюся цену.

Задача 2 ОЧ-2014 (9 класс)

На совершенно конкурентном рынке предприниматель работает на собственном самосвале и перевозит гравий. Собственный вес самосвала составляет 8 тонн. За перевозку 1 тонны гравия он получает 2000 рублей.

Известны предельные издержки (в рублях) на перевозку каждой дополнительной тонны груза (за 1 рейс):

$MC(q)=3q^2-220q+4400$, где $q$ – количество тонн гравия

Средние расходы на перевозку 1 тонны груза (AC) (за 1 рейс):
$$AC(q)=q^2-110q+4400$$

Задача 2 ОЧ-2016 (11 класс)

В стране R. есть налоговая инспекция, а есть предприниматель, который получил прибыль в размере 25 тугриков. Согласно законодательству, он должен уплатить налог в размере 20 процентов от прибыли.

Предприниматель хочет достичь как можно большего уровня счастья. Его функция счастья зависит от того, сколько денег он получил, и выражается следующей функцией:

$H = ln(1 + Y_D),$

Где $H$ – размер счастья, а $Y_D$ – его доход в тугриках после уплаты налогов и штрафов.

Задача 1 ОЧ-2016 (10 класс)

На рынке совершенной конкуренции в стране Ботанляндия спрос студентов на учебники имеет вид $Q^D = 40 − 0,2p$, где $Q$ – величина спроса в штуках, а $p$ – цена учебника в рублях.

Король страны решил нажиться на бедных школьниках и студентах и ввести налог в виде процента от цены покупателя (акциз).

Задача 3 ОЧ-2014 (8 класс)

Предприниматель X договорился с администрацией страны Фрутляндии о разрешении продажи и производства фруктов.

В таблице представлены издержки провоза 1 кг фруктов (во фрутиках – единице валюты Фрутляндии) на прямую перевозку между городами, т.е. перевозку без промежуточного города.

Субсидия для монополиста

На рынке товара $X$ присутствует монополист, максимизирующий прибыль, с функцией издержек $TC=\dfrac{Q^2}{4}$. Спрос описывается функцией: $Q_d=100-P$. Государство будет выплачивать монополисту потоварную субсидию в размере $s$ за каждую проданную единицу свыше 50.
а) При каких значениях $s$ монополист будет пользоваться субсидией?
б) Постройте функцию издержек монополиста с учётом субсидии, при $s=50$ и качественно (и кратко) объясните промежутки монотонности.

Современный робот АС-луч

Фирмы «МС» и «МБ» готовят задачи. Решать задачи они не умеют, поэтому они и только они пользуются помощью суперсовременного робота «АС-луч». Платят они ему единицами сна (роботам тоже нужно спать). Его оплата за один день составляет $w=L$, где $L$ — дни, которые робот суммарно потратит на помощь двум фирмам (не обязательно целые), а $w$ — те самые единицы.
За каждую готовую задачу и «МБ», и «МС» получает 2 единицы сна от руководящей фирмы «ЕИ».

РККО

На рабоче-крестьянском красном острове рынок мотыг контролируется государством. Оно назначает цену, а количество товара определяется рыночным способом как минимум из $Q_d$ и $Q_s$. Рабочие производят мотыги, которые покупают крестьяне, в количестве $Q_s=\frac{P}{2}$. Спрос на эти мотыги задан формулой $Q_d=120-P$.

В чём согласны экономисты — 2

Продолжим обсуждать исследование Дэна Фуллера и Дорис Гейде-Стевенсон, которое упоминалось в задаче 2 первого тура олимпиады.
Свойства задачи: 

Продуктовые талоны: реальная или фиктивная мера?

Как свидетельствует Росстат, в первом квартале численность граждан Российской Федерации с ежемесячным доходом ниже прожиточного минимума выросла до 22,7 млн человек. В отчете ВЦИОМ сообщается, что за прошедший год число бедных семей увеличилось почти вдвое. По всем данным выходит, что 15% населения страны находится за чертой бедности, а к её грани подходит ещё 10% населения.