На рабоче-крестьянском красном острове рынок мотыг контролируется государством. Оно назначает цену, а количество товара определяется рыночным способом как минимум из $Q_d$ и $Q_s$. Рабочие производят мотыги, которые покупают крестьяне, в количестве $Q_s=\frac{P}{2}$. Спрос на эти мотыги задан формулой $Q_d=120-P$.
Как свидетельствует Росстат, в первом квартале численность граждан Российской Федерации с ежемесячным доходом ниже прожиточного минимума выросла до 22,7 млн человек. В отчете ВЦИОМ сообщается, что за прошедший год число бедных семей увеличилось почти вдвое. По всем данным выходит, что 15% населения страны находится за чертой бедности, а к её грани подходит ещё 10% населения.
В Древней Греции ежегодный спрос купцов на грузоперевозки дальнобойными колесницами описывается уравнением $Q=100−P$, а предложение грузоперевозок со стороны колесничих–– уравнением $Q=P$, где $Q$ –– объем грузоперевозок (в тоннах, умноженных на километр пути), а $P$ –– цена за единицу перевозок (в драхмах на тонну-километр). Тяжелые колесницы наносят ущерб дорогам, который зависит от объема перевозок и равен $Q^2/4$ драхм –– ровно эту сумму нужно ежегодно тратить на ремонт дорог, чтобы они не портились со временем.
В маленьком поселке где-то в центральной России на берегу живописной реки одиноко стоит магазин, продающий только клюквенную настойку (других магазинов в поселке нет). Несмотря на то, что настойка особенно популярна в конце лета, годовой спрос на нее всегда равен $q_t=\max\{100-P_t; 0\}$, где $P_t$ – цена бутылки в году $t$, а $q_t$ – количество купленных бутылок в тысячах. Продавец настойки закупает ее у поставщика по цене $c=50$ рублей за бутылку и больше не несет никаких издержек.
Монополист, издержки производства которого представлены функцией $TC(q) ={q^2}/{4}$, работает на рынке с функцией спроса $Q^d (p)=30-p$. Проводимая государством антимонопольная политика подразумевает, что за каждую денежную единицу, на которую установленная монополистом цена превышает цену $p_c$, которая сложилась бы в равновесии, если бы фирма воспринимала цену как заданную, монополист платит штраф в размере $t$ денежных единиц. Общая сумма $T$, которую монополист обязан выплатить государству, определяется так:
Спрос на рынке монополии задан функцией: $Q_d=10000−100P$, а издержки фирмы заданы функцией: $TC=Q^2$.
a. Вводится потоварный налог $t=100$. Найдите новое равновесие, налоговые сборы, потери общества от введения налога на монополию, распределение налогового бремени между производителями и потребителями. Изобразите графически.
На рынке Фиников присутствуют доминирующая фирма с издержками $C_1(Q^l)=0.5(Q^l)^2$, где $Q^l$ - производимое доминирующей фирмой количество, а также сто маленьких конкурирующих между собой фирм с издержками $C_i(q_i)=100q_i^2$, где $q_i$ - количество товара, производимое каждой конкурентной фирмой. Спрос на этом рынке задан уравнением $P=24-2Q$. Цена на этом рынке
устанавливается следующим образом: