Больше группа — больше доход!

В некоторой стране «Чёртзачемтакойсложныйкоээфициентджини»’и проживает 5050 человек, разделённых на 100 групп населения с разными доходами и численностью. Доход внутри одной группы одинаков у всех её членов, у первой группы он равен 1, у второй — 2, у третьей 3, ..., у сотой - 100. Кроме того, известно, что численность первой группы — 1, второй — 2, третьей — 3, ..., сотой — 100 человек.

Посчитайте коэффицент Джини в данной стране

Предельная норма замещения и кривые безразличия

Помогите, пожалуйста, решить задачу. Большая просьба подробно разъяснить каждый пункт. Занимаюсь сама и эту задачу вообще никак не понимаю,но есть стремление понять :)
Пусть предпочтения индивида описываются функцией полезности Кобба–Дугласа вида u(x, y)=(x*y)^2.
(а) Выведите уравнение кривой безразличия, проходящей через точку (4, 2). Изобразите данную кривую безразличия.
Свойства задачи: 

Олигополия и издержки

На рынке олигополии функционируют две фирмы, с издержками:
$TC_{1}=X*q_{1}^2+Y*q_{1}$
$TC_{2}=(X+2)*q_{2}^2+Y*q_{2}$
Спрос на их продукцию задан функцией $P=480-Q$. (те если фирмы выберут объём $q_{1}$ и $q_{2}$, то на рынке установится цена $P=480-(q_{1}+q_{2}) $).
Найдите значение X и Y, если известно, что агенты принимают решение одновременно и в оптимуме $q_{1} = 30$, a $q_{2} = 20$.

Mon.Log.

Издержки монополиста заданы функцией $TC=log^2_{2}{q}+16$, а обратный спрос на его продукцию $P=16log_{2^q}{q}-log^2_{2^\sqrt q}{q}$. Монополист максимизирует прибыль, найдите оптимальный выпуск, если $q\ge 1$.

Качественные и количественные

На необитаемый остров волею судеб попали два экономиста Хывородеф и Веагад. И так как на острове делать нечего, то они решили порешать задачи по экономике. Хывородефа придумал 8 качественных и 8 количественных задач, а Веагад только по 4 задачи каждого вида. И они решили совершить обмен задачами для максимизации своего удовольствия. Функция удовольствия от решения задач Веагада $U=xy$ , где $x$ - количество количественных задач, а $y$ - количество качественных . Функция полезности Хывородефа - $U=x^{1/4}y^{3/4}$.

Задача 2 ОЧ-2015 (10 класс)

Рассмотрим классическую дилемму современного человека: с одной стороны – поддержание физической формы на определенном уровне, а с другой – удовольствие от потребления торта. Пусть уровень физической формы Антона зависит положительно от количества часов, проведенных в спортзале (переменная x), и отрицательно – от единиц съеденного тортика (переменная y): $F(x,y)=x^{2}-xy-y^{2}+73$. Антон точно уверен, что он не проведёт в спортзале больше $3$ часов.

Задача 1 ОЧ-2015 (10 класс)

Фирма «Три Угла», расположенная в стране N, занимается выращиванием волшебных цветов. Волшебные цветы растут сами, так что все издержки фирмы связаны только со строительством забора вокруг поля, на котором она растит свои цветы. Стоимость установки одного метра забора равна $\sqrt[4]{3}$ денежных единиц. Фирма может огородить забором поле любой площади, однако по законам страны N это поле обязательно должно быть треугольным (зато треугольник может быть любым: прямоугольным, тупоугольным, остроугольным).

Задача 3 ОЧ-2016 (8 класс)

Предположим, что вы ежедневно совершаете поездки из дома на работу и обратно на легковом автомобиле по новой платной трассе, соединяющей Зеленоград и Москву. Базовый тариф за проезд по маршруту Зеленоград – Москва в утренний час пик (6:00 – 10:00) составляет 400 рублей. Базовый тариф за проезд по маршруту Москва – Зеленоград в вечерний час пик (16:00 – 22:00) составляет 350 рублей. (Оба тарифа указаны с учётом затрат на бензин.) Альтернатива «ехать по бесплатной дороге» вам глубоко противна, так как Ленинградское шоссе является чрезвычайно загруженным.

Задача 2 ОЧ-2014 (10-11 класс). Пароходы

Фирма Паровой гигант является монопольным производителем пароходов. У фирмы есть семь потенциальных покупателей, каждый из которых раздумывает над покупкой одного парохода. Максимальная цена, которую первый покупатель согласен заплатить за пароход, составляет 210 тыс. дублонов. Второй покупатель согласен заплатить за пароход не более 180 тыс. дублонов. Третий — не более 160 тыс. дублонов. Четвёртый — не более 140 тыс. дублонов. Пятый — не более 120 тыс. дублонов. Шестой — не более 100 тыс. дублонов. Наконец, седьмой согласен заплатить за пароход максимум 80 тыс.

Задача 1 ОЧ-2014 (9 класс)

В сказочной республике Экоматемашии в скором времени состоятся парламентские выборы. За власть в стране борются две партии – Богачи и Бедняки. В распоряжении партии Бедняков имеется 1 очий (денежная единица Экоматемашии), в распоряжении Богачей – 25 очиев, и это открытая информация. Каждая из партий максимизирует долю мест в парламенте. Богачи и Бедняки не любят друг друга и не будут договариваться о каком-либо сотрудничестве, даже если оно взаимовыгодно.