На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

В стране Скуфиляндия существует одно единственное озеро где водится здоровый карась. Группа из рыбаков решает поделить озеро для рыбалки. Для этого они чертят схему озера: окружность диаметром 40 см.

Случайная задача

В начале года фирма «Игрикс» закупила ресурсы $\alpha$, $\beta$ и $\gamma$ для производства товаров $X$ и $Y$. Объем закупки ресурсов представлен в столбце $Q$ таблицы, цены — в столбце $P$. Чтобы сделать единицу товара $X$, нужно потратить $C_X$ шт.

Авторы задач

Темы задач

Без математики никуда

Ученики А, М и Е решают задачи по экономике и математике. КПВ каждого из них имеет вид $y=4-\frac{x}{3}$, $ y=12-3x$, $y=6-x$, где $x$ -- задачи по экономике, $y$ -- задачи по математике. Они решили заниматься в кафе, где осталось только 2 места, так что решать может только двое из них, а третий уйдёт домой. Однако ребята очень неусидчивые, поэтому вместе они могут решить только 20 задач по экономике и математике.

Постройте кривую производственных возможностей лицеистов.

Абсервант

Рассмотрим рынки товаров $X$ и $Y$, спрос на каждом из которых описывается функциями $X_d=100-P_x$ и $Y_d=100-P_y$. Фирма "Абсервант" является монополистом на рынке товара $X$ и совершенным конкурентом на рынке $Y$, где конкурентное окружение имеет суммарную функцию предложения $Y_s=P_y$.

Трехмерное потребление

Господин M потребляет всего три блага: жареную картошку ($x_1$), майонез ($x_2$) и агрегированное благо ($x_3$). Полезность, получаемая от потребления каждого из них, описывается функцией: $u_i(x_i)=10x_i-x_i^2$. Известно, что доход потребителя составляет $I$ д.ед, а рыночные цены на все блага равны 1.

а) Постройте карту кривых безразличия в координатах $(x_1,x_2,x_3)$ , если г. М максимизирует суммарную полезность $U=\Sigma u_i(x_i)$.

б) Определите максимально возможный уровень полезности $U(x_1^*;x_2^*;x_3^*)$ при различных значениях $I$.

Дискрминиация на рынке труда

Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.

Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:

$$w^{supply}_f=5+\frac{L_f}{2}, \text{ } \text{ } \text{ } \text{ } \text{ } w^{supply}_d=10+L_d,$$

где $w_f$ и $w_d$ - уровни заработных плат мигрантов и местных рабочих соотвественно.

Каскад на рынке труда

Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.

а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.

Предельная выручка и эластичность

Рассмотрим кривые индивидуального спроса $d_1(p)$ и $d_2(p)$. Известно, что при цене $p_0$ эластичности спроса первой и второй группы составляют $(-2)$ и $(-4)$ соотвественно.

а) Сравните предельные выручки первой и второй группы ($MR_1$ и $MR_2$) в точке $p_0$.

б) Положим $MR_{12}$ - предельная выручка на суммарном спросе $D(p)=d_1(p)+d_2(p)$ в точке $p_0$. Сравните величины $MR_1$, $MR_2$ и $MR_{12}$.

Все задачи автора

Необитаемый остров

Боб (агент 1) и Джон (агент 2) очутились на необитаемом острове. Ребятам приходится питаться рыбой($x$) и кокосами($y$), которыми Боб владеет в размере $(x_{1},y_{1})=(5, 10)$, а Джон - в размере $(x_{2},y_{2})=(10, 5)$.

Известно, что предпочтения в потреблении рыбы и кокосов описываются функциями полезности: $U_{1}=x_{1}+y_{1}$ и $U_{2}=x_{2}y_{2}$ для Боба и Джона соответственно.

Садовое неравенство

Рассмотрим садовое товарищество, организованное в виде кольцевых дорожек, вблизи которых расположены дома (см. рисунок).

На $i$-ой дорожке (считая от центра) живут $i$ идентичных дачников. Суммарный доход, получаемый жителями $i$-го кольца, равен $n+1-i$ млн руб., где $n$ - количество (не менее двух) дорожек в садовом товариществе.

Незнайка знает!

Однажды в Цветочном городе на аллее Ромашек встретились Винтик со Шпунтиком, который в последнее время увлекся экономикой, а именно вопросом, как оценить неравенство в распределении доходов в их городке. Шпунтик провел необходимые расчеты и поведал текущее положение дел.

Квадратичный Лоренц

Для экономики страны Кси известно, что кривая Лоренца описывается уравнением:

$$y=ax^2+bx+c,$$

где $x$ - доля беднейших жителей страны, $y$ - доля в общем доходе страны, которой владеет доля $x$ беднейшего населения, $a$ $(a\neq0), b, c$ - некоторые параметры, значения которых точно не известно.

Определите множество возможных значений коэффициента Джини в стране Кси.

Все задачи автора