Не зеленые, а green

На рынке зеленых апельсинов работает много фирм. Сколько - вопрос к вам! Известно, что спрос на апельсинки задается функцией $Q = 120 - P$, а фирмы могут уйти с рынка, так что издержки каждой имеют следующий вид:

$$TC_i=\begin{cases}
16Q_i^2+4,\quad & Q_i >0\\
0,\quad &Q_i = 0
\end{cases}$$

1. Определите отдачу от масштаба для фирм на рынке зеленых апельсинов при каждом возможном значении количества (цены на факторы производства постоянны).

DWL - это файл блокировки, созданный TurboCAD

На некотором рынке спрос линеен и задается функцией $Q^d=a-bP$. Предложение тоже линейно и выходит из начала координат, $Q^s=cP$.

Известно, что при введении потоварного налога на данном рынке образуется зависимость($T$ -- общая величина налоговых сборов)
$$T=20\sqrt{DWL}-2DWL$$
Найдите равновесную цену без вмешательства государства, если $20b=ac$.

Натуральный перелив

В конкурентной отрасли работают $N$ фирм, $N/2$ из которых производят товар с низкими издержками $TC_1 = c_1q^2_2$, а остальные фирмы – с высокими издержками $TC_2 = c_2q^2_2, c_2 > c_1$. Рассмотрите политику государственного вмешательства, которая состоит в помощи низкоэффективным фирмам через введение натурального налога (то есть такого налога, который взимается в виде товара)) по ставке $0 < t < 1$ на высокоэффективные фирмы и безвозмездной поставке изъятого объема на низкоэффективные фирмы.

Кенселинг

В некотором линейном мире, где все функции спроса и предложения были выражены линейными функциями, имели экономический смысл и никак не меняются со временем, на международном рынке некоторого товара одну из стран участниц решили закенселить, то есть запретили продавцами из этой страны продавать товар, а покупателям из этой страны покупать товар. На удивление, после этого равновесная цена на международном рынке не изменилась, а количество сократилось на 18 единиц.

Натуральный налог и два рынка

Рассмотрим два рынка, спрос и предложения на которых описываются функциями:
$$x^d_1 =100+0.5p_2 - p_1 \text{ } \text{ } \text{ } x^s_1 =p_1 - 0.5p_2$$

$$x^d_2=100+0.5p_1 - p_2 \text{ } \text{ } \text{ } x^s_2 =p_2 −0.5p_1$$

а) (0 баллов) Положим, что на двух рынках установилось равновесие, определите его параметры.

Субсидирование во имя экологии

Монополист Альфа занимается производством экологически безопасных пакетов, спрос на которые описывается зависимостью $P_d=100-Q$, где $Q$ - количество пакетов в тысячах. Известно, что если фирма произведет $Q$ тыс. пластиковых пакетов, то понесет издержки в размере $Q^2$ ден. ед.

Правительство в целях повышения качества окружающей среды субсидировало данное производство. Так, за каждую произведенную тысячу пакетов фирма получает $s$ ден. ед. в виде субсидии.

а) Определите совокупный выпуск при различных значениях $s>0$.

Дискрминиация на рынке труда

Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.

Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:

$$w^{supply}_f=5+\frac{L_f}{2}, \text{ } \text{ } \text{ } \text{ } \text{ } w^{supply}_d=10+L_d,$$

где $w_f$ и $w_d$ - уровни заработных плат мигрантов и местных рабочих соотвественно.

Каскад на рынке труда

Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.

а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.

Eco-friendly

В городе Врн компанией «Pirelli» организовано производство автомобильных покрышек. Спрос на покрышки имеет вид $Q_d=100-P+20\beta$, где $P$ – цена покрышек, а коэффициент $\beta$ определяет степень экологичности производства. $\beta = 1$, если производство экологичное, и $\beta = 0$ в ином случае (то есть может принимать только эти два значения). Функция издержек фирмы также зависит от $\beta$ и имеет вид: $TC=(1+\beta)Q^2+100+50\beta$.

Сезонный продукт

Зимой спрос и предложение на городском рынке пирожков с голубикой задаются, соответственно, функциями $Q_d(P)=100-P$ и $Q_{W}(P)=3P$. Летом предложение пирожков падает до $Q_{S_1}(P)=P$, потому что голубика растёт только в холодном климате. Но локальные производители освоили новую технологию выращивания голубики летом, поэтому предложение с недавних пор падает лишь до $Q_{S_2}(P)=2P$. Новая технология не понравилась государству, поэтому её запретили. Но столь важный рынок, решило государство, не должен оставаться без внимания.