Субсидирование во имя экологии

Монополист $Альфа$ занимается производством экологически безопасных пакетов, спрос на которые описывается зависимостью $P_d=100-Q$, где $Q$ - количество пакетов в тысячах. Известно, что если фирма произведет $Q$ тыс. пластиковых пакетов, то понесет издержки в размере $Q^2$ ден. ед.

Правительство в целях повышения качества окружающей среды субсидировало данное производство. Так, за каждую произведенную тысячу пакетов фирма получает $s$ ден. ед. в виде субсидии.

а) Определите совокупный выпуск при различных значениях $s>0$.

Дискрминиация на рынке труда

Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.

Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:

$$w^{supply}_f=5+\frac{L_f}{2}, \text{ } \text{ } \text{ } \text{ } \text{ } w^{supply}_d=10+L_d,$$

где $w_f$ и $w_d$ - уровни заработных плат мигрантов и местных рабочих соотвественно.

Каскад на рынке труда

Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.

а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.

Eco-friendly

В городе Врн компанией «Pirelli» организовано производство автомобильных покрышек. Спрос на покрышки имеет вид $Q_d=100-P+20\beta$, где $P$ – цена покрышек, а коэффициент $\beta$ определяет степень экологичности производства. $\beta = 1$, если производство экологичное, и $\beta = 0$ в ином случае (то есть может принимать только эти два значения). Функция издержек фирмы также зависит от $\beta$ и имеет вид: $TC=(1+\beta)Q^2+100+50\beta$.

Сезонный продукт

Зимой спрос и предложение на городском рынке пирожков с голубикой задаются, соответственно, функциями $Q_d(P)=100-P$ и $Q_{W}(P)=3P$. Летом предложение пирожков падает до $Q_{S_1}(P)=P$, потому что голубика растёт только в холодном климате. Но локальные производители освоили новую технологию выращивания голубики летом, поэтому предложение с недавних пор падает лишь до $Q_{S_2}(P)=2P$. Новая технология не понравилась государству, поэтому её запретили. Но столь важный рынок, решило государство, не должен оставаться без внимания.

Олимпийка или олимпос?

Фирма «Вершина» производит олимпийские куртки и имеет возможность осуществлять ценовую дискриминацию, продавая их по разным ценам на внутреннем и внешнем рынках. На внутреннем рынке фирма «Вершина» является монополистом и функция спроса на куртки имеет вид $Q^d=200-P$, на внешнем рынке фирма может продать любое количество курток по цене $P_w=160$. Функция издержек фирмы «Вершина» на производство курток имеет вид $TC=Q^2$.

Классика

На совершенно конкурентном рынке в краткосрочном периоде спрос представлен функцией $Q^d = 200-5P$, а предложение предъявляют $80$ одинаковых фирм с издержками $TC_i = 2q_i^2+10q_i +2021$, где $q_i$ – выпуск отдельной фирмы.

Равенство через налоги

В правительстве заметили, что для каждого гражданина страны выполняется такая закономерность: средний доход тех, кто богаче данного гражданина, превышает средний доход тех, кто его беднее, на величину $ay$, где $y$ – средний душевой доход, $a$ – некоторая положительная константа.

Государство Замунда

Маленькое, но гордое государство Замунда в основном специализируется на выращивании манговых деревьев, поскольку всё население страны обожает манго. Спрос на манго в Замунде имеет вид $Q_{d} = 200 - P$, где $Q_{d}$ $-$ величина спроса на манго в тоннах, $P$ $-$ цена манго в дундуках (валюта в Замунде). Предложение местных фермеров задаётся функцией $Q_{s} = 2P - 10$, где $Q_{s}$ $-$ величина предложения манго в тоннах, $P$ $-$ цена манго в дундуках. Замунда также может торговать с внешним миром на мировом рынке манго, где цена за $1$ тонну составляет $6$ долларов.

Планета Вулкан

Жители планеты Вулкан любят сыр, спрос на него на Вулкане описывается функцией $Q_{d} = 1300 - p$. При этом на самом Вулкане сыр производить сложно, потому что там жарко. Предложение сыра на Вулкане имеет вид $Q_{s} = -200 + 2p$. К счастью, в Объединённой федерации планет разрешена свободная торговля сыром, и на международном рынке можно купить или продать сколько угодно товара по цене $300$. Участие Вулкана в международном рынке не изменит цену.