Есть такая профессия - айс-латте пить и телеграм-канал вести

Фирма «Стонкс» является единственной фирмой на рынке, продающей фэнси жизнь. Спрос на фэнси жизнь описывается уравнением: $Q_d = 120 - 2P$.

1. Пусть издержки монополиста задаются уравнением $TC = Q^2$. Найдите параметры равновесия (цену и количество).

2. Теперь издержки фирмы «Стонкс» задаются уравнением $TC = 18Q - Q^2$ и известно, что завод этой фирмы ломается после девятой произведенной единицы фэнси жизни. Найдите параметры равновесия (цену и количество).

Гриша и Школа МПЦ

Спрос на обэд в школе МПЦ предъявляют 2 группы потребителей. Их спросы соответственно равны $Q^d_1 = 60 - 2P$ и $Q^d_2 = 60 - 3P$. Издержки школы-монополиста $TC = 0.5{Q^2}$. Она не умеет дискриминировать потребителей и очень из-за этого грустит. Некий Гриша Мязнов предлагает школе свои услуги: он сможет разделить потребителей на 2 группы и просит за это $X$ денежных единиц. Если он будет этим заниматься, то понесёт издержки в размере $0.875$ денежных единиц.

Параболы... они повсюду

Монополист на рынке задач про параболы на всеросе сталкивается с неопределённостью функции спроса, он лишь знает минимальное значение количество спроса при данной цене $P$ равно $Q_L=2a-P$, а максимальное $Q_H=2b-P$. При этом про значение параметров известно, что они принимают любые значения при условии что $a \in [7;10]$ и $b \in [10;25]$. Монополист не несёт издержки на производство задач, так как их легко переделывать из уже имеющихся.

Лаконичный монополист

Спрос на продукцию монополиста линеен, его предельные издержки линейны и возрастают по количеству, при этом при $Q=0$ больше либо равны нуля. При этом максимальная прибыль $\pi^*$ достигается при $P=10$ и $Q=90$. Найдите максимальное и минимальное значение прибыли фирмы.

Кривая обучения

Фирма-монополист производит едкие химикаты, средние издержки фирмы в период $t$ имеют вид: $$AC_t=\frac{1}{1+3\Sigma_t Q_i},$$ где $\Sigma_t Q_i$ — кумулятивный объём продукции, произведёной фирмой в периоды до $t$. Спрос в отрасли характеризуется функцией $$Q_d=\frac{1}{P^2}$$в каждый период. Фирма будет работать ровно 2 периода: $t\in\{1;2\}$. До первого периода фирма ничего не производила

Эластичность и ценовая дискриминация

Монополист осуществляет ценовую дискриминацию третьей степени, разделив всех потребителей товара Пси на две группы. Максимизируя прибыль, на первом сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_{1}=-2.5$ при установленной цене $p_1=10$. На втором же сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_2=-1,25$ при установленной цене равной $x$.

Определите значение $x$, считая, что предельная выручка на каждом из сегментов монотонно убывает.

Спрос и средние издержки

На графике представлена зависимость средних издержек ($AC$) монополиста и спрос на его продукцию ($D$).

Определите эластичность средних издержек по выпуску в точке оптимума.

Все задачи автора

Абсервант

Рассмотрим рынки товаров $X$ и $Y$, спрос на каждом из которых описывается функциями $X_d=100-P_x$ и $Y_d=100-P_y$. Фирма "Абсервант" является монополистом на рынке товара $X$ и совершенным конкурентом на рынке $Y$, где конкурентное окружение имеет суммарную функцию предложения $Y_s=P_y$.

Я больше не буду играть в эту игру

Девочка Элли располагает доходом $I = 20$ и тратит его исключительно на потребление уникального товара под названием «Маги в Шогилу». Полезность Элли задается функцией ${U = -q^2 + 42q - 2pq}$, где $q$ – количество потребленных Магов в Шогилу, $p$ – цена, по которой Элли их купила. Считайте, что Элли воспринимает цену $p$ как заданную.

Eco-friendly

В городе Врн компанией «Pirelli» организовано производство автомобильных покрышек. Спрос на покрышки имеет вид $Q_d=100-P+20\beta$, где $P$ – цена покрышек, а коэффициент $\beta$ определяет степень экологичности производства. $\beta = 1$, если производство экологичное, и $\beta = 0$ в ином случае (то есть может принимать только эти два значения). Функция издержек фирмы также зависит от $\beta$ и имеет вид: $TC=(1+\beta)Q^2+100+50\beta$.