Соня

На рынке игровых консолей действует монополист S. Спрос на его продукцию задаётся уравнением $Q^d=100-P$, $TC=20Q+600$. Кроме приставок фирма продаёт подписки на свои сервисы: по умолчанию в первый год они включены в цену консоли, а затем ежегодно пользователи их продлевают. При этом консоли продаются в каждом периоде, то есть клиентская база подписок постоянно растёт. Назовём величиной mpr (marginal propensity to reject) ту долю пользователей, которая откажется от подписки в i-периоде.

Дифференциация цены на дифференциальные уравнения

Фирма "Tex"=монополист на рынке решения дифференциальных уравнений. В стране есть два университета, которые пользуются ее услугами. Спрос первого университета можно описать как $$Q_{d1}=100-2P$$
$$Q_{d2}=200-10P$$

Первый год, фирма устанавливала для каждого университета разные цены. Известно, что издержки фирмы задаются уравнением: $$TC=4q_1^2+2q_1 \cdot q_2 +3q_2^2+204$$

Через год, правительство вводит для фирмы "Tex" следующее правило, оно устанавливает единую цену для каждого из университетов.

Монополисты.

$$\text{Задача №1}$$

Свинин – монополист на рынке мяса. Он действует на двух сегментах рынка, при этом устанавливая разные цены.
$$Q_d1=60-2P_1$$ $$Q_d2=80-2P_2$$ $$TC=Q^2$$
Через год государство предложило ему установить единую цену на общем рынке, при этом заплатив 20% от прибыли. Согласится ли Свинин с этим предложением?

Альматекс

2150 год. Агент octk_uqnqf разузнал, что в оптимуме у фирмы-монополиста "Альматекс" эластичность выручки по цене равняется -1, предельные издержки равны 3, эластичность спроса по цене постоянна и при $p=1$, $Q=32$.
Помогите напарнице octk_uqnqf, СВЕТЕ, разузнать, сколько же Альматекс производит в оптимуме...
$TC$ имеют "нормальный" вид.

Эх монополизм, монополизм...

Конец 19 века. В Соединенных Штатах Америки бурно развивается промышленность. Допустим есть две компании - Американская Угольная Компания (АУК) и Американская Сталелитейная Компания (АСК).
Свойства задачи: 

Монополист и рынок труда

Пусть у нас есть монополист, который может либо нанимать как монопсонист местных рабочих $w_{s} = 2L + 4$, либо за $8$ сколько угодно мигрантов. Монополист продает товар на рынке $Q_{d} = 16 - P$, производственная функция $Q = L$.
(а) Пусть фирма может дискриминировать работников. Найдите сколько наймут местных и мигрантов.
Как вы можете заметить, местным работникам это не понравилось
(б) Теперь фирма не может дискриминировать. Найдите сколько наймут местных и мигрантов.

Смышлёная продавщица

Красная Шапочка живёт с бабушкой в деревне, которая каждый день с утра печёт пирожки, а внучка их продает. Бабушка очень непостоянна и то, сколько она испечет, зависит только от её настроения.

Рядом с деревней есть три, далеко друг от друга расположенных, села, жителям которых Красная шапочка может продавать эти пирожки. Спросы каждого из трёх сёл на пирожки заданы уравнениями $Q=50-P$, $Q=40-P$, $Q=30-P$ соответственно. Красная Шапочка является единственным продавцом и может устанавливать разные цены в сёлах, издержек на транспортировку нет.

-АААААААА. -Не кричите...

На дворе 2121 год. В провинциальном городе Катрин больше нет имен, у людей теперь только никнеймы! Двое жителей этого города, Harbarsem и StepMargo, очень любят театральный грим для лица, они готовы утонуть в нем! Их функции полезности $U_{H}=6 \sqrt{q} - p - \sqrt{T} $ и $U_{M}=2 \sqrt{q} - p - \sqrt{T} $ , где $q$ - это количество миллилитров краски , $p$ - цена за все эти миллилитры краски, $T$ - штраф, суть которого будет описана ниже. Только Harbarsem и StepMargo готовы покупать этот грим. Если они его не покупают, то их полезность равна нулю.

Предприниматели и работники

В экономике с общей численностью населения L некоторые индивиды владеют фирмами и извлекают доход в виде прибыли. Остальные индивиды являются наемными работниками в этих фирмах и получают фиксированную заработную плату $w=1$. Труд является единственным фактором производства.
Производственная функция некоторой фирмы $j$ задается как:
$$q_j \bigl(l_j\bigr)=\varphi_jl_j,$$
где $l_j$ – количество работников, занятых в фирме $j$, а $\varphi_j$ – средняя производительность фирмы $j$.

Условный потолок

Фирма M продает некое лекарство в две страны – A и B. Фирма является монополистом на мировом рынке данного лекарства, так как она обладает патентом на его производство. В стране A спрос описывается уравнением $Q_A=30-P_A$, а в стране B – уравнением $Q_B=10-P_B$. Издержки производства считайте равными нулю. Фирма может назначать разные цены в разных странах, так как покупка лекарств иностранцами и перепродажи эффективно блокируются.