Гриша и Школа МПЦ

Спрос на обэд в школе МПЦ предъявляют 2 группы потребителей. Их спросы соответственно равны $Q^d_1 = 60 - 2P$ и $Q^d_2 = 60 - 3P$. Издержки школы-монополиста $TC = 0.5{Q^2}$. Она не умеет дискриминировать потребителей и очень из-за этого грустит. Некий Гриша Мязнов предлагает школе свои услуги: он сможет разделить потребителей на 2 группы и просит за это $X$ денежных единиц. Если он будет этим заниматься, то понесёт издержки в размере $0.875$ денежных единиц.

"Классик" и "Рэпчик"

На рынке производства музыки для активного бота существует две фирмы: "Классик" и "Рэпчик" , которые принимают решения о выпусках одновременно и независимо. Спрос на рынке описывается уравнением $Q^d = 120 - P$. Издержки первой фирмы - $TC_1 = \frac{1}{3}Q_1^2$, а издержки второй фирмы: $TC_2 = \frac{3}{8}Q_2^2$. При этом, есть великий исполнитель, "Ноунейм", который может составить для каждой из фирм сколько угодно песен, но каждая им обойдется в 12 денежных единиц.

Натуральный перелив

В конкурентной отрасли работают $N$ фирм, $N/2$ из которых производят товар с низкими издержками $TC_1 = c_1q^2_2$, а остальные фирмы – с высокими издержками $TC_2 = c_2q^2_2, c_2 > c_1$. Рассмотрите политику государственного вмешательства, которая состоит в помощи низкоэффективным фирмам через введение натурального налога (то есть такого налога, который взимается в виде товара)) по ставке $0 < t < 1$ на высокоэффективные фирмы и безвозмездной поставке изъятого объема на низкоэффективные фирмы.

Натуральный налог и два рынка

Рассмотрим два рынка, спрос и предложения на которых описываются функциями:
$$x^d_1 =100+0.5p_2 - p_1 \text{ } \text{ } \text{ } x^s_1 =p_1 - 0.5p_2$$

$$x^d_2=100+0.5p_1 - p_2 \text{ } \text{ } \text{ } x^s_2 =p_2 −0.5p_1$$

а) (0 баллов) Положим, что на двух рынках установилось равновесие, определите его параметры.

Лаконичный монополист

Спрос на продукцию монополиста линеен, его предельные издержки линейны и возрастают по количеству, при этом при $Q=0$ больше либо равны нуля. При этом максимальная прибыль $\pi^*$ достигается при $P=10$ и $Q=90$. Найдите максимальное и минимальное значение прибыли фирмы.

Графическая

Рассмотрим двухфакторную модель, характеризующуюся производственной функцией $Q(L,K)$. При ценах $(w;r)$ на факторы производства зависимость покупаемого на рынке труда (фактора $L$) от уровня общих издержек представлена на графике:

Постройте график в координатах $(TC;K)$, отражающий какой объем капитала закупит фирма при различных уровнях общих издержек, если $tg(\alpha)=\frac{1}{w}$.

Оправданные издержки

На одном предприятии система определения уровней производства на двух заводах происходит следующим образом: менеджер Аркадий говорит генеральному директору величину расходов ($A$) на производство $Q=q_1+q_2$, после чего директор определяет согласовывать бюджет или нет. Известно, что издержки на первом и втором заводе описываются функциями $TC_1=q_1^2+q_1+10$ и $TC_2=q^2_2+q_2+20$. Конечно, директор может сказать сумму большую, чем он мог бы потратить на производство, главное, чтобы существовала такая пара $(q_1,q_2)$, чтобы $TC(q_1)+TC(q_2)=A$.

Кнуты и пряники

Фирма по производству кнутов $(x)$ и пряников $(y)$ планирует свой выпуск на следующий месяц. Известно, что рыночные цены установилась на уровнях $P_x$ и $P_y$ руб. на кнуты и пряники соответственно.
Производство товаров обходится фирме в $(x+y)^2$ руб.

Определите уровень оптимального производства $(x^*;y^*)$ при различных парах $(P_x;P_y)$.

Все задачи автора

Эластичность и ценовая дискриминация

Монополист осуществляет ценовую дискриминацию третьей степени, разделив всех потребителей товара Пси на две группы. Максимизируя прибыль, на первом сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_{1}=-2.5$ при установленной цене $p_1=10$. На втором же сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_2=-1,25$ при установленной цене равной $x$.

Определите значение $x$, считая, что предельная выручка на каждом из сегментов монотонно убывает.

Дискрминиация на рынке труда

Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.

Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:

$$w^{supply}_f=5+\frac{L_f}{2}, \text{ } \text{ } \text{ } \text{ } \text{ } w^{supply}_d=10+L_d,$$

где $w_f$ и $w_d$ - уровни заработных плат мигрантов и местных рабочих соотвественно.