Рассмотрим двухфакторную модель, характеризующуюся производственной функцией $Q(L,K)$. При ценах $(w;r)$ на факторы производства зависимость покупаемого на рынке труда (фактора $L$) от уровня общих издержек представлена на графике:
Постройте график в координатах $(TC;K)$, отражающий какой объем капитала закупит фирма при различных уровнях общих издержек, если $tg(\alpha)=\frac{1}{w}$.
На одном предприятии система определения уровней производства на двух заводах происходит следующим образом: менеджер Аркадий говорит генеральному директору величину расходов ($A$) на производство $Q=q_1+q_2$, после чего директор определяет согласовывать бюджет или нет. Известно, что издержки на первом и втором заводе описываются функциями $TC_1=q_1^2+q_1+10$ и $TC_2=q^2_2+q_2+20$. Конечно, директор может сказать сумму большую, чем он мог бы потратить на производство, главное, чтобы существовала такая пара $(q_1,q_2)$, чтобы $TC(q_1)+TC(q_2)=A$.
Фирма по производству кнутов $(x)$ и пряников $(y)$ планирует свой выпуск на следующий месяц. Известно, что рыночные цены установилась на уровнях $P_x$ и $P_y$ руб. на кнуты и пряники соответственно.
Производство товаров обходится фирме в $(x+y)^2$ руб.
Определите уровень оптимального производства $(x^*;y^*)$ при различных парах $(P_x;P_y)$.
Монополист осуществляет ценовую дискриминацию третьей степени, разделив всех потребителей товара Пси на две группы. Максимизируя прибыль, на первом сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_{1}=-2.5$ при установленной цене $p_1=10$. На втором же сегменте рынка коэффициент ценовой эластичности спроса составил $\varepsilon_2=-1,25$ при установленной цене равной $x$.
Определите значение $x$, считая, что предельная выручка на каждом из сегментов монотонно убывает.
Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.
Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:
Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.
а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.
Мировую экономику составляют три страны – А, B и С. В каждой из них функция спроса на рынке товара Икс строго убывает, а функция предложения – строго возрастает, и изначально производится положительное количество товара.
Фирмы А и B производят однородный товар и конкурируют, выбирая уровни выпуска. Если фирмы выберут уровни выпуска $q_A$ и $q_B$, на рынке установится цена $P=12-q_A-q_B$. Средние издержки каждой из фирм постоянны и равны 3. В любой из ситуаций ниже фирмы выбирают объёмы выпуска одновременно, и выбранная пара выпусков фирм $(q_A,q_B)$ является равновесием, то есть выпуск $q_A$ оптимален для фирмы А при выпуске фирмы B, равном $q_B$, и наоборот. (слова «оптимален для фирмы А» нужно понимать как «оптимален для того, кто выбирает выпуск в фирме А», см.
Производственная функция экономики имеет вид $Q=\sqrt[3]{L}$, где $Q$ – совокупный выпуск экономики, а $L$ – количество трудоустроенных граждан (будем считать труд единственным фактором производства). Заработная плата в экономике равна $w=const$, цена продукции равна $p=const$. (a) Сперва предположим, эта экономика капиталистическая (то есть все её фирмы максимизируют прибыль). Рассчитайте равновесный выпуск $Q_1^\ast$ и занятость $L_1^\ast$.
Экономист предполагает, что функция спроса на производимую монополией продукцию имеет вид $P_d(Q)=a-bQ$, где $a,b>0$. Ему также известно, что функция общих издержек монополиста есть $TC(Q)=0,25Q^2$. (a) Может ли экономист оценить значения параметров $a$ и $b$, если, по его данным, монополист продаёт $Q^*=20$ единиц продукции по цене $P^*=50$ денежных единиц за штуку?