Потребитель живет три периода, а именно: ${0,1,2}$.
Его полезность от потребления в каждом из периодов выражается функцией $U_i = 3T\cdot C_i - C_i^2$, где $C_i$ – потребление в периоде $i \in \{0, 1, 2\}$.
В нулевом периоде ему приходит чек от Дональда Трампа в размере $T$, а, так как из-за пандемии он потерял работу, то это его единственный источник дохода за эти три периода.
Девочка Элли располагает доходом $I = 20$ и тратит его исключительно на потребление уникального товара под названием «Маги в Шогилу». Полезность Элли задается функцией ${U = -q^2 + 42q - 2pq}$, где $q$ – количество потребленных Магов в Шогилу, $p$ – цена, по которой Элли их купила. Считайте, что Элли воспринимает цену $p$ как заданную.
В городе Врн компанией «Pirelli» организовано производство автомобильных покрышек. Спрос на покрышки имеет вид $Q_d=100-P+20\beta$, где $P$ – цена покрышек, а коэффициент $\beta$ определяет степень экологичности производства. $\beta = 1$, если производство экологичное, и $\beta = 0$ в ином случае (то есть может принимать только эти два значения). Функция издержек фирмы также зависит от $\beta$ и имеет вид: $TC=(1+\beta)Q^2+100+50\beta$.
Кирилл и Гоша занимаются экспериментами и выдают мерч в каморке. За $2$ часа Кирилл может сделать $20$ экспериментов или выдать $40$ единиц мерча (а также любую их линейную комбинацию). Гоша, соотвественно, $80$ экспериментов или $20$ единиц мерча. Оба этих занятия эффективно распределены между ребятами. Мерч и эксперименты делаются специально для Мишы, функция полезности которого задаётся уравнением: $U = min\{x, y\}$, где $x$ – количество единиц
мерча, а $y$ – количество экспериментов.