На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

Обычно в задачах на производство мы считаем, что цены на факторы производства постоянны и мы можем покупать их в неограниченном количестве. Но все ресурсы в нашем мире конечны (например людской труд, скорее всего, ограничен количеством человек на планете).

Случайная задача

Дана функция спроса на товар Qd=8-0.5p. При какой цене коэффициент эластичности спроса по цене составит -0.5?

Авторы задач

Темы задач

Дискрминиация на рынке труда

Фирма "Красен Ясен" производит товар $X$, используя труд мигрантов и местных работников. Так, если фирма наймет $L_f$ мигрантов, то они смогут произвести $L_f/2$ единиц продукции, а $L_d$ местных рабочих за то же время смогут произвести $L_d$ единиц.

Известно, что исследуемая фирма - монопсонист на рынке труда и наблюдает функции предложения:

$$w^{supply}_f=5+\frac{L_f}{2}, \text{ } \text{ } \text{ } \text{ } \text{ } w^{supply}_d=10+L_d,$$

где $w_f$ и $w_d$ - уровни заработных плат мигрантов и местных рабочих соотвественно.

Каскад на рынке труда

Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.

а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.

Предельная выручка и эластичность

Рассмотрим кривые индивидуального спроса $d_1(p)$ и $d_2(p)$. Известно, что при цене $p_0$ эластичности спроса первой и второй группы составляют $(-2)$ и $(-4)$ соотвественно.

а) Сравните предельные выручки первой и второй группы ($MR_1$ и $MR_2$) в точке $p_0$.

б) Положим $MR_{12}$ - предельная выручка на суммарном спросе $D(p)=d_1(p)+d_2(p)$ в точке $p_0$. Сравните величины $MR_1$, $MR_2$ и $MR_{12}$.

Все задачи автора

Необитаемый остров

Боб (агент 1) и Джон (агент 2) очутились на необитаемом острове. Ребятам приходится питаться рыбой($x$) и кокосами($y$), которыми Боб владеет в размере $(x_{1},y_{1})=(5, 10)$, а Джон - в размере $(x_{2},y_{2})=(10, 5)$.

Известно, что предпочтения в потреблении рыбы и кокосов описываются функциями полезности: $U_{1}=x_{1}+y_{1}$ и $U_{2}=x_{2}y_{2}$ для Боба и Джона соответственно.

Садовое неравенство

Рассмотрим садовое товарищество, организованное в виде кольцевых дорожек, вблизи которых расположены дома (см. рисунок).

На $i$-ой дорожке (считая от центра) живут $i$ идентичных дачников. Суммарный доход, получаемый жителями $i$-го кольца, равен $n+1-i$ млн руб., где $n$ - количество (не менее двух) дорожек в садовом товариществе.

Незнайка знает!

Однажды в Цветочном городе на аллее Ромашек встретились Винтик со Шпунтиком, который в последнее время увлекся экономикой, а именно вопросом, как оценить неравенство в распределении доходов в их городке. Шпунтик провел необходимые расчеты и поведал текущее положение дел.

Квадратичный Лоренц

Для экономики страны Кси известно, что кривая Лоренца описывается уравнением:

$$y=ax^2+bx+c,$$

где $x$ - доля беднейших жителей страны, $y$ - доля в общем доходе страны, которой владеет доля $x$ беднейшего населения, $a$ $(a\neq0), b, c$ - некоторые параметры, значения которых точно не известно.

Определите множество возможных значений коэффициента Джини в стране Кси.

Все задачи автора

Удачливый Василий - 2

Решив проблемы с оценкой уровня неравенства (отсылка к задаче Удачливый Василий), вы удостоились возможности проанализировать экспортные доходы (в размере $TR_{Ex}$) национальной экономики, которая потребляет только экспортный товар $x_3$ (самостоятельно производить этот товар страна не способна), продавая по ценам $(p_1,p_2)$ блага $(x_1,x_2)$ в соответствии с кривой производственных возможностей, описываемой функцией $x_2=f(x_1)$.

Удачливый Василий

Представьте, что вам сказали коэффициент Джини, характеризующий неравенство в распределении доходов в России, этот коэффициент составил $0.5$.

Секретная лаборатория

В одной химической лаборотории производятся две смеси: икс ($X$) и игрек ($Y$). Известно, что икс и игрек синтезируются из двух веществ - альфа ($\alpha$) и бета ($\beta$). Для синтеза одной единицы икса требуются одна единица альфа и 2 единицы бета, а для производства одной единицы $Y$ требуется только 4 единицы альфа.

а) Постройте КПВ лаборатории в координатах $(X;Y)$, если запасы веществ, необходимые для производства икса и игрека, равны $(\overline{\alpha};\overline{\beta})=(64;32)$.