На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

Математик Алан.Т работает над секретным проектом. Для его работы требуются 1) Металлические роторы (Y), 2) Книги по криптографии (X).
Его начальство предложило такой набор этих деталей, кривая безразличия от которого Алан описывает как $(X+Y)/0,5 -2=(X-Y)^2$

Авторы задач

Темы задач

Трудное решение

Математик Алан.Т работает над секретным проектом. Для его работы требуются 1) Металлические роторы (Y), 2) Книги по криптографии (X).
Его начальство предложило такой набор этих деталей, кривая безразличия от которого Алан описывает как $(X+Y)/0,5 -2=(X-Y)^2$

Известно, что максимальное количество X, которое он может получить =10, Y=100. Функция бюджетного ограничения имеет линейный вид.

Кризис в стране "Э"

В некой стране «Э» производится два товара: изделия лёгкой промышленности, млн тонн (x) и изделия тяжёлой промышленности, млн тонн (y), КПВ задаётся следующим уравнением: $y=\sqrt{(\frac{61}{4})^2-x^2 }$. Известно, что товары в стране «Э» потребляются наборами (4;3). $P_x$ = 100 млрд; $P_y$ = 150 млрд, однако мировой рынок для этой страны закрыт. $(Tx) ̅$=0, t=0,15. (Все налоги идут в резерв правительства, текущий резерв составляет 1000 млрд, деньги из резерва не тратятся).

Химик, обанкротивший Всемирный Банк

В Республике «Р» недавно аспирант химического факультета защитил кандидатскую диссертацию и начал думать, как ему дальше жить. Он занимался углеводородами и решил построить на этом бизнес. Его бизнес-план таков: закупать на мировом рынке нефть по 40 дойлеров, изготавливать из неё на родине готовое топливо и продавать на мировом рынке по цене 150 дойлеров. Внутренняя валюта республики – дубли. К сожалению, Республика – маленькая аграрная страна, машин в ней нет, поэтому внутренний спрос на топливо в ней равен нулю.

Опцион на гречку

В экономике вымышленной страны существует товар "гречка", стоимостью 200 дублей. Через квартал цена должна увеличиться до 230 из-за массовой скупки со стороны населения, либо с вероятностью 1/2 цена опустится до 180 из-за большого урожая этой культуры. Один экономист решил заработать на этом и запустить на биржу новый call-опцион на гречку. Экономист максимизирует свою прибыль. Рассчитайте оптимальную цену исполнения опциона (подсказка: издержки для продавца будут составлять матожидание от исполнения обязательсв по опциону), ставка дисконтирования равна 2% в квартал.

Арбитраж клубнички

Однажды из-за пандемии закрылись ВУЗы и один студент эконмического факультета отправился к бабушке в деревню пережидать самоизоляцию. Делать там было особо нечего, поэтому наш воин науки от скуки принялся анализировать рынки клубники, так как он очень её любил. Было замечено, что в родной деревне спрос и предложение клубники задаются следующими функциями: $Q_1^d=200-P$; $Q_1^s=-40+3P$; Во второй деревне:$ Q_2^d=100-2P$;$ Q_2^s=20+4P$. Студент в любом случае каждый день ходит на рыбалку мимо второй деревни, поэтому логистические издержки для него отсутствуют.

Макарьевская ярмарка

Однажды, в далекие средние века, в одном городе проходила ежегодная Макарьевская ярмарка: каждый год князь приглашал купцов продавать товары заморские, и люд сходился поискать вещей полезных. И вот как-то раз, проезжал наш купец мимо этой ярмарки, услышал, что можно на ней подзаработать, да и решил попытать счастья: вёз он с собой топоры дивные, да такие, что поленья в щепки с одного взмаху разлетались, в общем удовольствие одно, да и себестоимость небольшая, 50 золотых всего, других издержек у купца нет.

Тысяча и один завод

Задача:
Фирма владеет 1001 заводом, функции издержек которых задаются следующей геометрической прогрессией: $b_1=q^2$, q=2: $TC_1=q_1^2$, $TC_2=2q_2^2$, $TC_3=4q_3^2$, $TC_4=8q_4^2$, и так далее.

Вопросы:
-Найдите TC фирмы.
-К чему стремятся общие издержки фирмы при увеличении количества заводов?
-Определите уровень выпуска для i завода при общем уровне выпуска Q и количестве заводов n.

Примечания:
-В первом вопросе используйте общую формулу геометрической прогрессии.

Общая кривая Лоренца

В стране N есть два региона: A и B. В регионе A живут 12000 человек, их общий доход составляет 144000, кривая Лоренца задается уравнением $y = x^2$. Население региона B равно 8000, общий доход всех жителей равен 96000. В регионе B есть две равные по численности группы населения: богатые и бедные. Доход внутри каждой группы одинаков, при этом суммарный доход бедных в два раза меньше суммарного дохода богатых.
а) Задайте аналитически кривую Лоренца, отражающую распределение доходов в стране N. Рассчитайте коэффициент Джини.

Предложение денег

1. Если Центральный банк покупает государственные облигации у коммерческих банков на 10000 рублей, а норма резервных требований составляет 20%. Сколько составит максимальное увеличение предложение денег?

2. Если Центральный банк покупает на открытом рынке государственные ценные бумаги на 5 млн. рублей, то как максимально изменится предложение денег при норме обязательного резервирования в 20%?

Пути молодого предпринимателя

Уоррен. Б каждый день объезжает все свои предприятия. Но маршрут, по которому он едет каждый день изменяется. Заранее продумав оптимальное Q Завода_j (где j номер строения) Уоррен сделал так, что бы завод был соединен столькими дорогами с другими, сколько товара производится в данном месте. Известно, что Уоррен владеет тремя фирмами.
Фирма $$X_1$$ – монополист на рынке. P=10. $TR=12+6Q.$
Фирма $$X_2$$ – находится на рынке совершенной конкуренции. $Qd=5-P;П=(-25)$ ;$MC = 1/Q$ .компания несет убытки при установленном Q.