На этой странице можно найти задачи по экономике. Прежде чем добавлять свою задачу, ознакомьтесь с руководством.

Добавить задачу на сайт

Самая свежая задача

Вы когда-нибудь мечтали стать руководителем крупного банка? Представим, что Вы являетесь им. Вам открыты на выбор две инвестиционные технологии, различающиеся, естественно, доходностью, которая определяется периодом инвестирования.

Случайная задача

Выразите эластичности произведения и частного функций $f_{1} (x)$ и $f_{2} (x)$ через $Ef_{1} (x)$ и $Ef_{2} (x)$.

Авторы задач

Темы задач

Банк и инвестиции

Вы когда-нибудь мечтали стать руководителем крупного банка? Представим, что Вы являетесь им. Вам открыты на выбор две инвестиционные технологии, различающиеся, естественно, доходностью, которая определяется периодом инвестирования. Пусть существуют 3 периода $(T=i, \text{ где } i={0,1,2})$. Первый вариант подразумевает вложение средств в $T = 0$ и получение ровно такой же суммы в периоде $T = 1$. Напротив, вторая опция предлагает вложиться в $T = 0$ и выручить средства в $T = 2$, причём в размере $R\cdot S$,где S-сумма вложений, $R>1$.

Измерение С-37

В параллельной вселенной С-37 расстояние измеряют иначе, чем мы. Для нас очевидно, что расстояние на плоскости между двумя точками $(x_1;y_1 )$ и $(x_2;y_2 )$ можно найти по формуле:
\[\rho\bigl( (x_1;y_1);(x_2;y_2)\bigr)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\]
Однако в измерении С-37 люди измеряют расстояние следующим образом:
\[\rho\bigl( (x_1;y_1);(x_2;y_2)\bigr)=\max{\bigl(|x_1-x_2|;|y_1-y_2|\bigr)}\]
Представим, что через межпространственный портал вы попали в это измерение, и вам нужно решить следующую задачу:

Кер-Манговиль

В пригороде города-столицы Кер-Манговиль сотня фирм занимается производством ящиков для манго. Известно, что все фирмы имеют одинаковые издержки $TC=2q+\dfrac{q^2}{2}+1$, в то время как спрос на ящики задан как $Q=1200−100P$. Государству для проведения своих манговых реформ нужно собирать налоги.

Corgis&Коржик

“Corgis&Коржик” – монополист на рынке сладостей. Фирма выпекает тортики и сама же их продаёт. У неё две группы клиентов, но невозможно предсказать, кто придёт в магазин завтра. Из-за этого функция спроса может каждый день выглядеть по-разному.

Совсем наоборот!

Возьмем какую-нибудь статическую игру с двумя игроками и конечным количеством действий и определим процесс ПИ(н)ДС:

Терра Инкогнита

Румыния на карте мира может быть аппроксимирована как правильный круг с центром в городе Брашов. Представим, что экономический агент «фирмы» представлен в Румынии только равномерно «размазанными» по территории Румынии маленькими магазинчиками и банком Goldman Sacks, чьи банкоматы расположены возле каждого маленького магазинчика, и отделение которого находится в городе Брашов. Но все Румыны пользуются лишь банкоматами, поскольку транзакционные издержки от перемещения по Румынии слишком высоки, так что обычному человеку путешествовать по Румынии крайне невыгодно.

Смерть и налоги

В подземельях старой части города Фламберг искусные волшебники готовят зелье, в народе называемое «жидкой смертью». Однако рецепт его приготовления различен для тех, кто занимается белой и чёрной магией: 20 колдунов производят зелье с издержками $TC_A=10q+q^2+1$, другие 10 волшебников на рыке имеют издержки $TC_B=25q+\dfrac{q^2}{2}+1$, где $q$ – уровень производства для каждого волшебника, измеряемый в дюжине склянок. «Жидкая смерть» свободно торгуется на рынке зельеварений: спрос на это зелье в Фламберге представляет собой линейную зависимость: $Q=550−10P$.

Остатки сладки

а) Найдите остаток от деления $2^{100}$ на 255.

б) Найдите остаток от деления выражения $x^{2018}-2$ на $x^{253}-1$, при $x \gt 1$

Странный случай

Флэш – Производительность

Рассмотрите следующую модель рецессионой экономики.