Кризис в стране "Э"

В некой стране «Э» производится два товара: изделия лёгкой промышленности, млн тонн (x) и изделия тяжёлой промышленности, млн тонн (y), КПВ задаётся следующим уравнением: $y=\sqrt{(\frac{61}{4})^2-x^2 }$. Известно, что товары в стране «Э» потребляются наборами (4;3). $P_x$ = 100 млрд; $P_y$ = 150 млрд, однако мировой рынок для этой страны закрыт. $(Tx) ̅$=0, t=0,15. (Все налоги идут в резерв правительства, текущий резерв составляет 1000 млрд, деньги из резерва не тратятся).

Химик, обанкротивший Всемирный Банк

В Республике «Р» недавно аспирант химического факультета защитил кандидатскую диссертацию и начал думать, как ему дальше жить. Он занимался углеводородами и решил построить на этом бизнес. Его бизнес-план таков: закупать на мировом рынке нефть по 40 дойлеров, изготавливать из неё на родине готовое топливо и продавать на мировом рынке по цене 150 дойлеров. Внутренняя валюта республики – дубли. К сожалению, Республика – маленькая аграрная страна, машин в ней нет, поэтому внутренний спрос на топливо в ней равен нулю.

Опцион на гречку

В экономике вымышленной страны существует товар "гречка", стоимостью 200 дублей. Через квартал цена должна увеличиться до 230 из-за массовой скупки со стороны населения, либо с вероятностью 1/2 цена опустится до 180 из-за большого урожая этой культуры. Один экономист решил заработать на этом и запустить на биржу новый call-опцион на гречку. Экономист максимизирует свою прибыль. Рассчитайте оптимальную цену исполнения опциона (подсказка: издержки для продавца будут составлять матожидание от исполнения обязательсв по опциону), ставка дисконтирования равна 2% в квартал.

Арбитраж клубнички

Однажды из-за пандемии закрылись ВУЗы и один студент эконмического факультета отправился к бабушке в деревню пережидать самоизоляцию. Делать там было особо нечего, поэтому наш воин науки от скуки принялся анализировать рынки клубники, так как он очень её любил. Было замечено, что в родной деревне спрос и предложение клубники задаются следующими функциями: $Q_1^d=200-P$; $Q_1^s=-40+3P$; Во второй деревне:$ Q_2^d=100-2P$;$ Q_2^s=20+4P$. Студент в любом случае каждый день ходит на рыбалку мимо второй деревни, поэтому логистические издержки для него отсутствуют.

Макарьевская ярмарка

Однажды, в далекие средние века, в одном городе проходила ежегодная Макарьевская ярмарка: каждый год князь приглашал купцов продавать товары заморские, и люд сходился поискать вещей полезных. И вот как-то раз, проезжал наш купец мимо этой ярмарки, услышал, что можно на ней подзаработать, да и решил попытать счастья: вёз он с собой топоры дивные, да такие, что поленья в щепки с одного взмаху разлетались, в общем удовольствие одно, да и себестоимость небольшая, 50 золотых всего, других издержек у купца нет.

Тысяча и один завод

Задача:
Фирма владеет 1001 заводом, функции издержек которых задаются следующей геометрической прогрессией: $b_1=q^2$, q=2: $TC_1=q_1^2$, $TC_2=2q_2^2$, $TC_3=4q_3^2$, $TC_4=8q_4^2$, и так далее.

Вопросы:
-Найдите TC фирмы.
-К чему стремятся общие издержки фирмы при увеличении количества заводов?
-Определите уровень выпуска для i завода при общем уровне выпуска Q и количестве заводов n.

Примечания:
-В первом вопросе используйте общую формулу геометрической прогрессии.

Cloud Money

Задача:
(1) В городе N стоял один-единственный ресторан “Cloud Money”. Функция спроса на его продукцию задаётся уравнением: $Q^d=100-P$, издержки имеют вид: $MC=40+2Q$, FC=200 и следующую структуру: 40 – заработная плата, 2Q – износ оборудования, FC=200 – аренда.
(2) Вдруг напротив появился конкурент – ресторан “Радуга”, из-за чего спрос на продукцию нашего заведения изменил вид на $Q=100-P_1-0,1P_2$,где $P_1$-наша цена, $P_2$ - цена конкурента. Засланный казачок выяснил, что “Радуга” поставила цену на уровне 80.