Покупцы и продаватели

Potaryon $\quad x_{1 c}=\frac{\alpha I}{\left.P_{1} / \alpha+\beta\right)}=\frac{3 I}{5 P_{1}}$

$\underbrace{x_{2}}_{1}$

На Вальрасовых островах живут всего два обитателя: Робинзон и Пятница. Питаются они морепродуктами: рыбой и крокодилами.

Робинзон ловит рыбу гарпуном, а крокодилов - голыми руками. И то и другое он делает с постоянной скоростью. Прорыбачив весь рабочий день, он наловит тонну рыбы; столько же (по весу) он сможет поймать зубастых, если посвятит весь день ил
Пятница ловит крокодилов с Робинзоновой скоростью, а рыбу - д два раза Пятница ловит крокодилов с Робинзоновой скоростью, а рыбу - в два раза Оба довольно прожорливы. Полезность Робинзона от его дневного потребления
рыбы и крокодилов задаетсяя функцией $U_{R}\left(x_{1}, x_{2}\right)=x_{1}^{3} x_{2}^{2}$, а соответствующая функция полезности Пятницы - $U_{F}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
Обычно два островитянина совместно принимают решения о том, кто что будет ловить и как потом делить улов. Но как-то раз они не поделили улов, и решили, что отныне их взаммодействие будет ограничиваться сделками купли-продажи, в связи с чем были спешно организованы два рынка: рыбы и крокодилов. Презрение островитян к монополизму выше мирских ссор, и они честно воспринимают цены как
заданные. Только вот как им найти равновесные цены?

Рассмотрим рынок рыбы. Изобразите на графике рыночные спрос и предложение и найдите параметры рыночного равновесия.
$p_{:}=\frac{P_{1}}{p_{2}} \quad P<1 \Rightarrow M=(0,1) \quad, T=p_{1} \cdot 0+p_{2} \cdot 1=p_{2} \quad, \quad x_{1 d}=x_{1 c}-x_{1 M}=\frac{3 \cdot p_{2}}{p_{1} 5}-0=\frac{0,6}{P} \quad, x_{1 S}=0$ $P=1 \Rightarrow M=\left(x_{1}, 1-x_{1}\right) \forall x_{1} \in[0,1], I=P, x_{1}+P_{2}\left(1-x_{1}\right)=P_{2}, x_{1 c}=0,6, x_{1}$ d mootoe $\in[0 ; 0,6], x_{1 s}$ modoe $\in[0,0,4]$ $P_{>1} \Rightarrow M=(1,0), \quad I=P_{1} \cdot 1+p_{2} \cdot 0=p_{1}, X_{1 c}=\frac{30 P_{1}}{5 P_{1}}=0,6, \quad x_{1 d}=0, x_{15}=1-0,6=0,4$ $A_{2} \rightarrow \underbrace{}_{9}$ $p<2=M=(Q 1), I=P_{2}, x_{\pi c}=\frac{P_{2}}{2 P_{1}}=\frac{0,5}{P}, x_{1} d=\frac{Q 5}{P}-0=\frac{0,5}{P}, x_{1 s}=0$ $P=2 \Rightarrow m=\left(x_{1}, 1-2 x_{1}\right) \forall x_{p} \in[0,0,5], x_{1 c} \leq \frac{05}{2}=0,25, x_{1 d}$ noodoe $\in[0 ; 025], x_{1, n}$ notole $\in[0,0,25]$ $P>2=M=(05 ; 0), I=95 p_{1}, x_{1 c}=\frac{95 p_{1}}{2 p_{1}}=0,25, x_{1 d}=0, x_{15}=x_{1 M}-x_{1 c}=0,5-0,25=10,25$ fouplorlore cropoe q npegooornerlue:

$$
X_{10}= \begin{cases}\frac{Q 6}{P}+\frac{Q, 5}{P}=\frac{1,1}{P} & 0<p<1 \\ {[0 ; 9,6]+\frac{95}{1}=[9,5 ; 1,1]} & P=1 \\ \frac{Q 5}{P} & 1<p<2 \\ {[0 ; 0,25]} & P=2 \\ 0 & P>2\end{cases}
$$

$$
X_{1 \rho}=\left\{\begin{array}{l}
0 \\
{[0,0,4]} \\
0,4
\end{array}\right.
$$

$$
04+[0,0,25]=[0,4 ; 0,65]
$$

$$
0,65
$$

