функция бюджетного ограничения Джона имеет вид $$I=\max (f_1(x),f_2(x),f_3(x),...,f_n(x))$$
известно, что потребляет он Hex (x) и Go (y)
где $$f_i(x)=a_i-x$$
$$a \in [10;0]$$
известно, что $$a_1>a_2>a_3>...a_i$$
$$\Delta a_i =1 =const$$
известно, что потребляет он Hex (x) и Go (y)
где $$f_i(x)=a_i-x$$
$$a \in [10;0]$$
известно, что $$a_1>a_2>a_3>...a_i$$
$$\Delta a_i =1 =const$$
Докажите или опровергните, что если мы изменим вид бюджетного ограничения, добавив функции $f_{n+1}(x), f_{n+2}(x)$ и функция полезности имет вид:
$$\frac{200x+6000y}{150}-2=(x-y)^2+U$$
то выбор комбинации x и y Джона не изменится.
Комментарии